zigya tab
Advertisement

A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is 1.5 x 103 N/C and points radially inward, what is the net charge on the sphere?


Given,

Radius of conducting sphere, r = 10 cm = 0.1 m
Electric field , E=1.5 × 103N/C at distance , d =20 cm= 0.2 m

As,                E = 14πε0qr2

                  q = E. 4π ε0.  r2                       

q = 1.5 × 103 × 4π ×8.854×10 -12× (0.2)2

                        q = 6.67 × 10-9C

Here, since electric field is directed radially inward charge q is negative.

Thus,               q = - 6.67 × 10-9C   = -6.67 nC.

355 Views

Advertisement
A point charge causes an electric flux of -1.0 x 103 Nm2/C to pass through a spherical Gaussian surface of 10.0 cm radius centred on the charge. (a) If the radius of the Gaussian surface were doubled, how much flux would pass through the surface? (b) What is the value of the point charge?

Given, Φ = –1.0 x 103 Nm2/C
r1 = 0.1 m, r2 = 0.2 m
(a) Doubling the radius of Gaussian surface will not affect the electric flux since the charge enclosed is the same in the two cases. Thus, the flux will remain be the same i.e., –1.0 x 103 Nm2/C
(b)

Given, Φ = –1.0 x 103 Nm2/Cr1 = 0.1 m, r2 = 0.2 m(a) Doubling
               

417 Views

A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of 80.0 μC/m2. (a) Find the charge on the sphere. (b) What is the total electric flux leaving the surface of the sphere?

Given,  Diameter of the sphere=2.4  Radius of sphere,  r = 2.42 = 1.2 m Surface charghe density of conducting sphere, σ = 80 × 10-6 C/m2

(a) Charge on sphere

                           σ.A= σ.  4πr2
                   
          q = 80 × 10-6 × 4 × 3.14 × (1.2)2q = 1.45 × 10-3C

(b) The total electric flux leaving the surface of the sphere 
using the gauss formula, 
                              ϕ = qε0             = 1.45 × 10-38.854 × 10-12 = 1.6 × 108 Nm2/C
378 Views

An infinite line charge produces a field of 9 x 104 N/C at distance of 2 cm. Calculate the linear charge density.

Given,      Electric field , E = 9 ×  104 N/C                 Distance , r = 2 × 10-2 m

Using the formula of electric field for uniformly charged wire,

                E = λ2πrε0

              λ = E. 2πr. ε0

λ = 9× 104  × 2π × 2 × 10-2  × 8.854× 10-12    =10 × 10-6  
linear charge density-λ = 10 μC/m.  
       
171 Views

Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude 17.0 x 10–22C/m2. What is E: (a) in the outer region of the first plate, (b) in the outer region of second plate, and (c) between the plates?

Given,

Surface charge density, σ = 17.0 × 10-22C/m2

(a) To the left of the plates, electric fields are equal and opposite as plates are close to each other electric field is zero as surface charge density in outer side is zero. 

(b) To the right of the plates, electric fields are equal and opposite as plates are close to each other electric field is zero. 

(c) Electric fields between the plates are in same direction as total E.F. on both sides of plate due to σ surface charge density = σε0
So, electric field of inner side of plate  = σ2ε0
and for both plate   E = σ2ε0+σ2ε0
                              E = σε0 = σ × 4π × 9 × 109              E = 17.0 × 10-22× 4 × 3.14 × 9 × 109 

E = 1921.7 × 10-13    = 1.92 × 10-10N/C.

374 Views

Advertisement